
Interrupts

Kizito NKURIKIYEYEZU, Ph.D.



Readings

Read Chap 4 of Simon, D. E.
(1999). An Embedded
Software Primer
Topics

Assembly language
Saving and restoring
context
Data-shared problem
Atomicity and critical
section
The volatile keyword
Interrupts latency

1Readings are based on Simon, D. E. (1999). An Embedded Software Primer
2Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 1 / 30



Limitation of CPU timers
1 #include <avr/io.h>
2 int main(){
3 uint8_t count=0;
4 DDRB |= (1<<PB1)
5 ASSR |= (1<<AS0); //use ext oscillator
6 TCCR0 |= (1<<CS00); //normal mode, no prescaling
7 while(1) {
8 while (! (TIFR & (1<<TOV0))){/*Wait until overflow occurs*/}
9 TIFR |= (1<<TOV0); //clear by writing a one to TOV0

10 count++; //extend counter
11 if((count % 64) == 0){//toggle PB0 every 64 overflows
12 PORTB ^= (1<<PB1);
13 }
14 }
15 }

LISTING 1: ATMega128 code to blink an LED using a timer.
Note that this program is wasteful since the CPU cannot do anything else until the overflow occurs.

1If you do not have experience with timers, please check out Mike Silva’s article at
https://www.embeddedrelated.com/showarticle/478.php

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 2 / 30

https://www.embeddedrelated.com/showarticle/478.php


Limitation of the timer programs
What if we are to generate two delays at the same time?

Example: Toggle bit PB5 every 1s and PB4 every 0.5s
What if there are some task to be done simultaneously with the timers?

Example: (1) read the contents of port A, process the data, and send them to
port D continuously, (2) toggle bit PB.5 every 1s, and (3) PB.4 every 0.5s.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 3 / 30



What is an interrupt?
Interrupts are triggered when certain events occur in the hardware1.
e.g. when a serial chip has sent data to a microprocessor and wants it to read
it from its pin, it sends an interrupt to the processor, usually by sending a signal
to one of the processor’s IRQ (interrupt request) pins.
On receiving an interrupt, the microprocessor stops its current execution,
saves the address of the next instruction on the stack and jumps to an interrupt
service routine (ISR) or interrupt handler.
The ISR is basically a subroutine written by the user to perform certain
operations to handle the interrupt with a RETURN instruction at the end. It is a
good practice to save register state and reset the interrupt in ISRs.
ISRs are similar to a CALL except that the call to the ISR is automatically
made.

1This lecture will not teach details of interrupts. You should have acquired this knowledge in your
previous course. For a quick review, please see prof.Jonathan Valvano’s lecture for details on
interrupts https://users.ece.utexas.edu/~valvano/Volume1/E-Book/C12_Interrupts.htm

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 4 / 30

https://users.ece.utexas.edu/~valvano/Volume1/E-Book/C12_Interrupts.htm


What is an interrupt?
An interrupt is a way for an external (or, sometimes, internal) event to pause
the current processor’s activity, so that it can complete a brief task before
resuming execution where it left

FIG 1. Principle of an interrupt

For example, one can set up the processor so that it is looking for a specific
external event (like a pin going high or a timer overflowing) to become true,
while it goes on and performs other tasks.
When these even occur, we stop the current task, handle the event, and
resume back the previous tasks.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 5 / 30



What is an interrupt?
An interrupt is an exception, a change of the normal progression, or
interruption in the normal flow of program execution.
An interrupt is essentially a hardware generated function call.
Interrupts are caused by both internal and external sources.
An interrupt causes the normal program execution to halt and for the interrupt
service routine (ISR) to be executed.
At the conclusion of the ISR, normal program execution is resumed at the point
where it was last.

In short, with an interrupt , there is no need for the processor to monitor the status
of the devices and events. Instead, the events notify the processor when they occur
by sending an interrupt signal to processor

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 6 / 30



Interrupts vs. polling
1 #include <avr/io.h>
2 int main(void){
3 // Initialization code left out for clarity
4 while (1) {
5 if ((PINB & (1 << SWITCH_PIN)) == NOT_PRESSED ) {
6 // Turn off the Led
7 PORTB |= (1<<LED_PIN); // Set PB1 to HIGH
8 }
9 else {

10 // Turn on the led
11 PORTB &= ~(1<<LED_PIN); // Set PB1 to LOW
12 }
13 }
14 return 0;
15 }

LISTING 2: Polling keeps check if the switch is pressed

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 7 / 30



Interrupts vs. polling
1 #include<avr/io.h>
2 #include<avr/interrupt.h>
3 #define F_CPU (1000000UL * 16UL) //16MHz clock
4 ISR (TIMER1_OVF_vect){
5 PORTD ^= (1 << PD0);
6 TCNT1 = 63974; // for 100ms at 16 MHz
7 }
8 int main(){
9 DDRD = (1 << PD0);

10 TCNT1 = 63974; // for 100ms at 16 MHz
11 TCCR1A = 0x00;
12 TCCR1B = (1<<CS10)|(1<<CS12); // Timer mode with 1024 prescler
13 TIMSK = (1 << TOIE1); // Enable timer1 overflow interrupt
14 sei(); // Enable global interrupts
15 while(1){/*Do nothing here! Everything is done via the ISR*/}
16 }

LISTING 3: Blink an LED with an ISR
Please note that the main blinking the LED is handled by the ISR and the main program would be
free to do something else. This increases the efficiency of CPU and decreases waiting time.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 8 / 30



Interrupt vs. polling
Using polling, the CPU must continually check the device’s status
Using interrupt:

A device will send an interrupt signal when needed.
In response, the CPU will perform an interrupt service routine, and then resume
its normal execution.
Allows low response latency
Determinism (in many cases anyways!). Determinism is the consistency of the
response time

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 9 / 30



Interrupt vs polling
Polling uses a lot of CPU horsepower

checking whether the peripheral is ready or not
Wait until the peripheral is ready (but wait for how long?)
interrupts use the CPU only when work is to be done

Polled code is generally messy and unstructured
big loop with often multiple calls to check and see if peripheral is ready
necessary to keep peripheral from waiting
ISRs concentrate all peripheral code in one place (encapsulation)

Polled code leads to variable latency in servicing peripherals
whether if branches are taken or not, timing can vary
interrupts give highly predictable servicing latencies

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 10 / 30



What causes an interrupt?
Timers —there are at least two interrupts for each time: one for an overflow
and another for the compare match
Interrupts set for external hardware interrupts. For the ATmega128, the
external interrupts are triggered by the INT7:0 pins.
Serial communication interrupts
Serial Peripheral Interface (SPI) interrupts
Analog-to-digital converter (ADC) interrupts
etc

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 11 / 30



Why use an interrupt?
To detect pin changes (eg. rotary encoders, button presses)
Watchdog timer (eg. if nothing happens after 8 seconds, interrupt me)
Timer interrupts - used for comparing/overflowing timers
ADC conversions (analog to digital)
EEPROM ready for use
Flash memory ready

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 12 / 30



Saving and Restoring the Context
Due to limited number of registers, the ISRs and task codes usually have to
work with same registers.
As shown in Fig. 2, the task code has no idea of the changes taking place in
registers like R1 or R2 in the ISR.

FIG 2. Example of assembly code of ISR

Hence if R1 is modified by the ISR, we might get an incorrect final result.
To solve this problem it is common practice to save the register contents onto
the stack (saving the context) and restoring them at the end of the ISR

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 13 / 30



Disabling Interrupts
Most microprocessors allow programs to disable interrupts.
In most cases the program can select which interrupts to disable during critical
operations and which to keep enabled by writing corresponding values into a
special register.
Nonmaskable interrupts however cannot be disabled and are normally used to
indicate power failures or other serious event.
Certain processors assign priorities to interrupts, allowing programs to specify
a threshold priority so that only interrupts having higher priorities than the
threshold are enabled and the ones below it are disabled.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 14 / 30



The Shared-Data Problem
In many cases the ISRs need to communicate with the task codes through
shared variables.
Listing 4 shows the classic shared-data problem. The code continuously
monitors two temperatures and sets off an alarm if they are different.
An ISR reads the temperatures from the hardware.The interrupt might be
invoked through a timer or through the temperature sensing hardware itself.
The code is buggy because it sets of the alarm when it should not.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 15 / 30



1 static int temperatures [2];
2 void interrupt ReadTemperature(void){
3 temperatures[0] = ReadTemperatureSensor(0);
4 temperatures[1] = ReadTemperatureSesnor(1);
5 }
6 void main (void){
7 int room1Temperature, room2Temperature;
8 while(true){
9 reactor1Temperature = temperatures[0];

10 reactor2Temperature = temperatures[1];
11 if(room1Temperature != room2Temperature){
12 // Set off an alarm and alert plant operators
13 }
14 }
15 }

LISTING 4: Industrial temperature monitoring
The code is part of an industrial plant control firmware. The software monitors temperatures of
various reactors. The temperatures are supposed to be equal, otherwise there is mulfunction, and
the software should send alerts to the plant operators. The code, however, is buggy. Why?

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 16 / 30



The Shared-Data Problem
Suppose all temperatures have been 20 ◦C for a while
Suppose now that the CPU execute the following code

1 reactor1Temperature = temperatures[0];

Suppose now that an interrupt occurs and that both temperature have
increased to 21 ◦C degrees
Thus, the ISR will assign 21 to all elements of the temperatures array.
When the ISR ends , the MCU will continue with the next line of code

1 reactor2Temperature = temperatures[1];

Since the ISR has set all elements of the temperatures array to 21, the
reactor2Temperature=21.
However, the variable reactor1Temperature is still 20 since the code has not
yet update it (Remember it was last updated just before the ISR fired!).
When the MCU compares the two temperatures, it erroneously set off an alarm

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 17 / 30



The Shared-Data Problem
1 static int temperatures [2];
2 void interrupt ReadTemperature(void){
3 temperatures[0] = ReadTemperatureSensor(0);
4 temperatures[1] = ReadTemperatureSesnor(1);
5 }
6 void main (void){
7 int room1Temperature, room2Temperature;
8 while(true){
9 if(temperatures[0] != temperatures[1]){

10 // Set off an alarm and alert plant operators
11 }
12 }
13 }

LISTING 5: Industrial temperature monitoring—Much harder to catch bug
This code is similar to that in Listing 4 except that the program does not store the sensors data into
local copies. Instead, it directely compares values in the temperatures array. Where is the bug?

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 18 / 30



Remember, C statements are terse and hide lots of information
The assembly code in Listing 6 shows if an interrupt occurs between the two
MOVES, this translates into the same problem we had before and the alarm
goes off when it shouldn’t have.

1 // Other code ommitted fro brevity
2 MOVE R1, temperatures[0]
3 MOVE R1, temperatures[1]
4 SUBTRACT R1, R2
5 //
6 //Set off the alarm
7 //
8 JCOND 0, _IS_TEMPERATURE_OK:
9 //

10 //Other instruction if the temperature matches
11 //

LISTING 6: Assembly language equivalent of the code in Listing 5
The same bug would appear if an interrupt occurs between the line that load the temperatures0 and
register R1 and the line of code that loads the value temperatures1 into register R2.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 19 / 30



Characteristics of the shared-data bug
Very hard to find because they do not occur every time to code runs
They, in fact, appear random

Solving the shared-data problem
The problem can be solved by disabling the interrupts during the instructions
that use the shared variable and re-enabling them later

1 while (true){
2 // Disable interrupts
3 interrupt_disable();
4 reactor1Temperature = temperatures[0];
5 reactor2Temperature = temperatures[1];
6 // Re-enable interrupts
7 interrupt_enable();
8 ...
9 // Continue with the remaining code

10 ...
11 }

LISTING 7: Solution to the shared-data problem
Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 20 / 30



Atomic operations
An operation (or set of operations) is atomic, linearizable, indivisible or
uninterruptible if it appears to the rest of the system to occur instantaneously.
Atomicity is a guarantee of isolation from concurrent processes.
Hence the code between disable() and enable() above is atomic

Consider an ISR that code in Listing 9 that updateshours, minutes, and seconds
every second through a hardware timer interrupt. Is this code atomic?

1 long calculateSecondsSinceMidnight (void){
2 long result =0;
3 interrupt_disable();
4 result = (long) (hours * 3600 + minutes * 60 + seconds);
5 interrupt_enable();
6 return result;
7 }

LISTING 8: Function to compute the number of seconds since midnight

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 21 / 30



Atomic operations
1 static int seconds, minutes, hours;
2 void interrupt updateTime(void){
3 ++seconds;
4 if(seconds >= 60){
5 seconds = 0;
6 ++minutes;
7 if(minutes >= 60){
8 minutes = 0;
9 ++hours;

10 if(hours >= 24){
11 hours = 0;
12 }
13 }
14 }
15 }

LISTING 9: Interrupt to update the elapsed time

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 22 / 30



Atomic operations
What would happen calculateSecondsSinceMidnight (void) function is called
somewhere else from a critical section that has disabled interrupts?
In this case, the function will incorrectly enable interrupts on return.
Listing 11 provides a better solution to this problem

1 long calculateSecondsSinceMidnight (void){
2 long result =0;
3 bool isInterruptAlreadyDisabled = false;
4 interrupt_disable();
5 isInterruptAlreadyDisabled = true;
6 result = (long) (hours * 3600 + minutes * 60 + seconds);
7 if(isInterruptAlreadyDisabled){
8 interrupt_enable();
9 }

10 return result;
11 }

LISTING 10: A bug-free function to compute the number of seconds since midnight

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 23 / 30



How about this solution?
1 static long int seconds;
2 int SECONDS_IN_DAY =60*60*24;
3 void interrupt updateTime(void){
4 // Code omitted for brevity
5 ++seconds;
6 if(seconds == SECONDS_IN_DAY){
7 seconds = 0L;
8 }
9 // Code omitted for brevity

10 }
11 long calculateSecondsSinceMidnight (void){
12 return seconds;
13 }

LISTING 11: A risky function to compute the number of seconds since midnight

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 24 / 30



How about this solution?
This is a risky, irresponsible and dangerous solution
if the CPU has registers (e.g., 32-bit registers) that are large enough to hold
the up to the total number of seconds in a day (i.e., 86400), then the code
would be atomic. The generated assembly would be atomic as shown below

1 MOVE R1, seconds
2 RETURN

Otherwise, the generate assembly would be non-atomic

1 // Get the first byte or word
2 MOVE R1, seconds
3 // Get the second byte or workd
4 MOVE R2, (seconds +1)
5 ...
6 // Code omitted for brevity
7 ...
8 RETURN

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 25 / 30



The volatile Keyword
Compilers assume that the value in a variable stays in memory unless the
program changes it, and they use this assumption to optimize the code.
In embedded systems, this can lead to serious problem2

For example, in Listing 12, the compiler might read seconds in one or more
registers and instead of updating the value before saving it to result , it will read
the value from the register every time instead of from memory.
Some compilers might also remove the while-loop during optimization causing
the same bug we were trying to avoid
This is prevented by declaring secondsas volatile. This warns the C compiler
that the variable might change due to interrupts or other routines and not to
optimize code pertaining to it.

1 static volatile long int seconds;

2This problem may not arise during firmware development when usually the compile’s optimization is
with turned off.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 26 / 30



The volatile Keyword
1 static long int seconds;
2 void interrupt updateTime(void){
3 ...
4 seconds++;
5 if(seconds == 60L*60L*24L){
6 seconds = 0L;
7 }
8 ...
9 }

10 long calculateSecondsSinceMidnight (void){
11 long result =0;
12 //When we read the same value twice, it must be good
13 while(result != seconds)
14 result = seconds;
15 return result;
16 }

LISTING 12: Function to compute the number of seconds since midnightAssembly
Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 27 / 30



Interrupt Latency
Interrupt latency is the amount of time taken to respond to an interrupt.
It depends on several factors:

Longest period during which the interrupt is disabled
Time taken to execute ISRs of higher priority interrupts
Time taken for the microprocessor to stop the current execution, do the
necessary ‘bookkeeping’ and start executing the ISR
Time taken for the ISR to save context and start executing instructions that count
as a “response”
The third factor is measured by knowing the instruction execution times from the
processor manual, when instructions are not cached.

Disabling interrupts increases interrupt latency so this period should be kept as
short as possible

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 28 / 30



Keep ISR short and fast
ISRs affect the normal execution of program and can block handling of other
interrupts. Thus, interrupt service routine (ISR) should be short and to the
point so that the primary application can resume execution.
The real point of an interrupt is to handle an urgent event that requires the
system’s attention. To keep the routine short, only do the minimum of what
really needs to be done at that moment. For example, if communication data is
triggering the interrupt, stuff the data into a buffer, set a flag and let the main
program process the data. Don’t try to process it in the interrupt!
Don’t call a function from within your interrupt (unless they are inline functions).
The function call overhead will kill your timing.
Any processor intensive activity such as processing a data buffer, performing a
calculation, etc. should instead set a flag and let the main application do the
processing.
Avoid delay functions, loops or any time intensive logic such as for loops,
division or modulus operations

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 29 / 30



Understand ISR response time
Not taking into consideration the interrupt response time can lead to serious
bugs that are hard to find and troubleshoot.
For example, a simple context switch into the interrupt can take between four
clock cycles. For a microcontroller running at 8 MHz this can be a delay of 500
nanoseconds. This is just for one context switch into the interrupt! There is
another one when leaving the interrupt!
It is very important to understand how often your periodic and asynchronous
interrupts are occurring so that you can ensure the rest of the program has an
opportunity to run.
It’s also important to understand if there is an opportunity for interrupts to occur
at the same time and if they do understand the latency between one finishing
and the next running.

Kizito NKURIKIYEYEZU, Ph.D. Interrupts November 2, 2022 30 / 30



The end


	The end

